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ABSTRACT
We extend a construction of Higman, Neumann and Neumann [LS, 1V.3.1]
and show that every profinite group G with only countably many open
subgroups embeds in a 2-generated profinite group F in which all torsion
elements are conjugate to elements of G; if G is pro-p, F can be chosen pro-
p. This answers a question of Wilson (oral communication) and generalises
a result of Lubotzky and Wilson [LW].

Introduction
Let G be a profinite group and f: A — B a continuous isomorphism between
the closed subgroups A and B of G. The definition of HNN extension extends
to the category of profinite groups with continuous morphisms as follows [ZM1,
(3.3)]): let H denote the usual (discrete) HNN extension G (t) = (G, t| t lat =
f(a), a € A) and let S denote the family of normal subgroups N of finite index
in H and such that N N G is open in G. Then

H = lim H/N

Nes

is called the profinite HNN extension associated to G and f; if i: G — H is
the continuous homomorphism induced by the inclusion of G in H, then H and
1 have the usual universal property: if j: G — F is a continuous morphism of
profinite groups, and if in E there is an element s such that s71j(a)s = jof(a)
for every a € A, then there is a unique continuous morphism m: H — E which
sends ¢ to s and is such that j and wo¢ agree on G.
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If G is pro-p, then the maximal pro-p-quotient H(p) of H, together with the
induced morphism i,: G — H(p) is called the pro-p-HNN extension associated
to G and f.

Unlike the discrete case however, the homorphisms 7 and ¢, are not necessarily
injective. In section 1, we study what their kernels are, and under which condi-
tions they are injective. It turns out that the obvious necessary conditions are
also sufficient.

These results are of independent interest: HNN extensions and amalgamated
products are central in the Bass-Serre theory of profinite groups developed by
Gildenhuys and Ribes [GR], Mel'nikov and Zalesskii [ZM1, ZM2), and we show
how our description of the kernels, together with results of Ribes [R] on amalga-
mated products, can be used to describe the kernels in finite graph products of
profinite groups.

In section 2 we construct the group E.

ACKNOWLEDGEMENT: I would like to thank the Institute for Advanced Study
at the Hebrew University and the organisers of the special year in Field Arith-

metic for their hospitality and the warm and congenial atmosphere I found there.

1. Description of the kernels
THEOREM 1.1: With the notation as above, keri = K, where
K= ﬂ{Ul U open normal in G, f(AnU)=BnU}.

Thus, ¢ is injective if and only if
(x) For every open normal subgroup U of G there is an open normal subgroup
V of G contained in U and such that f(ANV) = f(A)nV.
In this case, the group H is residually finite.

Proof: From the definition of H, it follows that keri = N{N NG| N € S}.
Let N € S. Then N NG is an open normal subgroup of G; from f(ANN) =
(ANN)t = A'NN = BN N we obtain keri C K.

Conversely, let U be an open normal subgroup of G such that f(ANU) =
BNU. The isomorphisms A/ANU ~ AU/U and B/BNU ~ BU/U induce an
isomorphism f: AU/U — BU/U. The canonical epimorphism H — (G/U)*¢(t)
induces then a continuous epimorphism from H onto the profinite HNN extension
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associated to G/U and f. The second inclusion follows then from the residual
finiteness of (G/U) * (t) [BT, Theorem 3.1].

Let X and Y be sets of representatives for G/A, G/B respectively, with 1 in
their intersection. Then every element g of H is written in a unique way (called

the normal form) as

9= g1t g2t .. . gna

wheree; € {1,-1},¢; = 1impliesg; € X, ¢; = —1limpliesg; € Y, g, € X, a € A4,
and no occurrence of t~11t or t1¢~! appears. Since A and B are closed, there is
an open normal subgroup U of G such that a # 1 implies a ¢ U, g; ¢ A implies
g: ¢ AU and g; ¢ B implies g; ¢ BU. By (), we can assume that f(ANU) =
BNU. If p is the canonical epimorphism from H onto (G/U) *f (t), then p(g)
is written in reduced form as p(g; )t p(g2)t<* ...p(g»)p(a) and is therefore non-
trivial by Britton’s Lemma. The residual finiteness of H now follows from the
residual finiteness of (G/U) x (t).

Clearly, the injectivity of ¢, implies the injectivity of ¢, and thus condition (*)
must hold for 7, to be injective. It turns out however that this condition is not
sufficient.

Indeed, consider the group of exponent p generated by two elements a and b
such that [a, ] is central. Let A = (a, [a,b]) and let f be defined by f(a) = [a, 8],
f([a,b]) = b. But in a finite p-group, the equation [a,b] = a* implies ¢ = 1!
Indeed, if v;(G) denotes the i-term of the lower central series of G, then a €
v:(G) implies a® € v;(G) and [a,b] € v;41(G). Thus the pro-p HNN extension
associated to G and f is the group (t). 1

LEMMA 1.2: Let G be a finite p-group, f: A — B an isomorphism between two

subgroups of G. Suppose that G has a chief series (C;)i<n satisfying

(x+) f(ANC;) = f(A)NC; and f induces the identity on (AC; N C;_1)/C; for
every i > 0.

Then G embeds in a finite p-group T in which f is induced by conjugation and

(Ci)i<n refines to a chief series.

Proof: We consider first the case where the restriction of f to AN Cj is the
identity. Let U = Cy. If A C U, there is nothing to prove. Suppose therefore
that there is an element a in AN U and let b = f(a). Then ab™! € U. From the
fact that f is the identity on AN U, we deduce that a? = b and g% = g for
every g€ AnU.
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Let C be the cyclic group of order p generated by the element @, and consider
the wreath product U ! C. Recall that it is defined as the semi-direct product of
UC by ', where the action of C on U€ is given by s9(h) = s(gh) for s € U®, g
and h in C, and the multiplication is given by (sy, hy)(s2, he) = (3'1‘232, hihsg) for
81, S5 in UC and hy, he in C.

One defines an embedding of G into U} C as follows: let m: G — C be the
epimorphism sending U to 1 and a to @, and let §: G — G be defined by 8(a*u) =
a*for 0 <i < pandueU. For g in G, one then defines s, € UC by: s,(a*) =
[6(ga")]*ga’.

It is then well-known that the map g — (s4,7(g)) defines an embedding of G
into U1 C. Let s € UC be defined by

s(@') = b~'a".
We claim that (s,1) is our desired element. By definition, we have

1 ifi<p-1,
a? fi=p—-1,

sa(a’) = {

and g it
i Jami"lbat ifi<p—1,
sb(a)_{ba”‘l fi=p—1.

Also (5,1)7Y(8q,@)(s,1) = ((s71)%s,s, @) and

(s71)%sas(a’) = (s71)%(@")sa(a")s(a’)

_ Ja7*bat isi<p-—1,
aPb~PHlgP~l jsi=p—1,
= Sb(ﬁi)

because aPb~? = 1. Thus (s,1)7(sq,7(a))(s,1) = (sp,7()). Let u € ANU.
Then s,(@') = a~*ua® belongs to ANU. Hence s~'s,s = s,. This shows that
in U 1 C, conjugation by s coincides with f on A. Clearly (C;) refines to a chief
series of U 1 C.

We will show by induction on the size of G that we can reduce the general case
to the first case.

Let (C;)i<n be a chief series satisfying (). If G is trivial, there is nothing to
prove. By induction hypothesis, C; embeds in a finite p-group T3 in which the
restriction of f to ANC} is induced by conjugation by an element s and (C;)1<i<n
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refines to a chief series of Ty. By Higman’s amalgamation theorem [H], the
(discrete) amalgamated product Ty x¢, G is residually p and has a finite p-quotient
Ty = (T1 *¢, G)/N such that Ty and G embed in T3, and (C;)i<i<n refines to a
chief series of T5. Observe that these properties are preserved by inverse image.
Intersecting if necessary N with the normal subgroup of T3 *¢, G generated by
T,, we may therefore assume that 73 has a maximal normal subgroup U which
contains s and intersects G in C.

Thus, considering the partial isomorphism g defined by g(e) = sf(a)s™! for
a € A allows us to use the first case. |

THEOREM 1.3: Let G be a pro-p-group and f: A — B an isomorphism between
two closed subgroups of G. Let T be the set of open normal subgroups U of G
such that there are normal subgroups U = C,, C C,., C --- C Cy = G satisfying
(xx) f(ANC;) = BNC; and f induces the identity on (AC;NC;_,)/C; for every
i>0.
Then keri, = ({U| U € T}. Thus i, is injective if and only if every open
subgroup of G contains an element of 7. In this case H is residually p.

Proof: Let S, be the set of elements of S which have index a power of p. Then
H(p) is the inverse limit of the quotients H/N where N ranges over S,. Thus
keri, =({NNG|N € S,}.

Let N € Sp, and let (D;)i<m be a chief series for H/N; the distinct members
of {D; NG| i < m} then give a chief series for G/GN N which satisfies (). Thus
NNnGeT.

Conversely, let U € T and (C;) the associated sequence of normal subgroups.
Since f induces the identity on each (AC; N C;—)/C;, the sequence (C;) refines
to a chief series (C!) satisfying (x). Let f: AU/U — BU/U is the isomorphism
induced by f; by the lemma, (G/U)*¢(t) has a normal subgroup of index a power
of p which intersects G/U trivially. The inverse image of this normal subgroup
in H is a member of S, which intersects G in U.

The proof that if i, is injective then H is residually p is done as in Theorem
1.1. n

Remark: Let (G;)i>o be the decreasing chain of closed subgroups of G defined
as follows: Go = G, G;41 is the closed subgroup generated by G?[G,G;] and
{f(a)a e € ANG;}U{f~!(a)a}| a € BNG;}. Then each G; is normal in G
and they satisfy (*x); if G is finitely generated, they are open and keri, = G;.
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APPLICATION TO GRAPH PRODUCTS OF PROFINITE GROUPS.  Recall from [ZM1,
(3.1)] that a finite graph of profinite group is given by

— a finite graph I" with vertex set V(I'") and edge set E(I'), together with two
maps dy and d; from E(T) to V(T).

— for each vertex v a profinite group G(v); for each edge e a profinite group
G(e) and embeddings a§: G(e) — G(do(e)) and a§: G(e) — G(di(e)). Let
us denote by A. and B, the groups a§(G(e)) and a5(G(e)).

The graph product is then defined as in the discrete case: for each edge e, let f.
be the isomorphism af{a§)~!: Ac — Be; let T be a maximal subtree of I, and let
S be the (profinite or pro-p) tree product. of the profinite groups G(e), e € E(T'),
with amalgamated subgroups A, and B for e € T (via f.); the (profinite or
pro-p) graph product is then the (profinite or pro-p) HNN extension II of S with
respect to the partial isomorphisms f. for e € E(I') N T (on the letters t.). We
also have natural maps ¢,: G(v) — II and ¢.: G(e) — II. An easy application of
1.1 and 1.2 and of Theorem 1.2 in [R] gives then the following:

Profinite graph product: Let U be an open normal subgroup of G(v) for some
vertex v; then U contains ker ¢, if and only if there are open normal subgroups
V(w) of G(w), w € V(I'), such that V(v) C U and for each edge e, f.(4. N
V{dp(e))) = Be N V(d1(e)).

Pro-p graph product: Let U be an open normal subgroup of G(v) for some vertex
v; then U contains ker ¢, if and only if for each vertex w there is a decreasing chain
(V(w,1))i<n of open normal subgroups of G(w) such that V(v,n) C U, f.(4.N
V(do(e),)) = BeNV(d;(e),%) and f, induces the identity on each (A.V (do(e), )N
V(do(e),t —1))/V(do(e), ) for every edge e and i < n.

2. The construction

We now fix a profinite group G with countably many open subgroups, and will
construct a 2-generated profinite group E in which G embeds and where all the
torsion elements are conjugate to elements of G; if G is pro-p, then so will E.
We will do both constructions at the same time. Let F be the free profinite
[resp pro-p| group on ay,...,a, and let o be the automorphism of F' defined by
ay & ag, ..., Ap_1 > ap, ap ++ a1. Let N be the closed normal subgroup
of F' generated by ay,...,a,-1. Then N is free on countably many generators
[M, Proposition 4.1]. Let X = {a %a;a}| i € Z, 1 < j < p— 1}; the discrete
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subgroup of F' generated by X is dense in N; since ay,...,a,-1 € X, there is a
set of topological generators of N containing them and therefore we can choose
an epimorphism m: N — G with ay,...,ap—1 in its kernel.

Consider the subgroup A = N x (1) of F x G and the isomorphism f: 4 —
B = f(A) defined by: f(a,1) = (c(a),n(a)). Then f is clearly continuous, and
we now consider the profinite [resp., pro-p] HNN extension E associated to F x G
and f.

We will first show that F x G embeds into FE, i.e., that F x G and f satisfy
() [or (+x)].

Let U be an open normal subgroup of F' x G. Then U contains an open
normal subgroup of the form U; x Us; since 7 is continuous we may assume that

U, ¢ 7=1(Uy); because o has order p, we may assume that o(U;) = U;. Then
F(AN (UL x U2)) = {(o(a), 7(a))] @ € NN U1}

and

Bn(Uy x Uz) = {(a(a), n(a))|a € Nno Y ({U) na~ Uy}

Thus f(AN (U x Uy)) = BN (U x Uy), which shows ().

For (), observe first that F'x (¢) is a pro-p-group and that U, is a normal
subgroup. Let F = Cy D C3 D -+ D C,, = U be a chain of normal subgroups of
Fx (o) with [C; : Ci41] = p; then o induces the identity on C;/C;iyq, w(C;) is a
normal subgroup of G and [7(C;) : 7(Ci1)] equals 1 or p.

We will refine the series C; x 7(C;) of F' X G to one satisfying (*x); this is done
by induction on ¢; suppose that (D;);< has already been constructed satisfying
{(#+), with D, = C; x n(C;). There are two cases to consider:

Case 1: w(C;)=m 431). Let Dpy1 = Q1 X w(C;). Then
f(Dmy1N A) ={(o(a),m(a))la € NN Ciyr1}

and

Dpny1 N B ={(o(a),m(a))la € NNo™(Cis1) N7~ H(n(Ci))},

which implies that f(Dpmy1NA) = Dpy1NB. Ifa € C;NN, then ac(a)~! € Ciyy,
and therefore (a,1)f(a,1)~! € D,,1, which shows (¥*).
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CASE 2: 7(C;) # m(Ciy1). Let Dy = Cizq1 X 7(C;), and Dppqp = Ciyq X
7(Cit+1). As above, one shows that f(D,41NA) = Dypp1NB and f(D,,42NA) =
Dmy2NB. Ifa € C;N N, then ac(a)~! € C;41 and therefore (a,1)f(a,1)"! €
Dpoy1; since Diyy N A= DppyoN A, we obtain (sx).

This finishes the proof that F x G embeds inside E. By of [ZM1, (3.10)]
(see also (3.2)), any torsion element of E is conjugate to a torsion element of
F x G, ie., of G. We now claim that F is generated by (a1,1) and ¢: indeed,
conjugating (a;, 1) by ¢, we obtain successively (as,1),...,(ap,1) and therefore
F x (1) € ((a1,1),t); this in turn implies that B C {(a1,1),%), and because
F x G = (F x (1), B), finishes the proof of the claim.
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